
AD—AO ’44 200 RADC CORP SANTA MONICA CALIF
~~~ 17/2

1N1ERPROCESS COSJMICATION FX’ENSIONS FOR YtE UNIX OP!*ATINS sv—nccuj
J* 77 C A St 4SHINE F*9620—77—C—0023UNCLASSIFIED R~2O6*/1~ *r flu

END
D~ 1E

clIM E

0—77



I 0 V~I21 II~
L —

II •i ~I ~~ :: ~:i~
IHI~1.25 llhIU~ Hffl~

MICROCOPY RESOLUTION TES I CH&RT
BIJ kI A~ OF~~~~1 A N 1 A ~~[,~ 1



r —

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
.

~~~~~~~~
“—

~
—--

~~~;

R-2064/1-AF
C June 1977

1 <

rnterprocess Commu nication Extensions
for the UNIX Operatin g System :

I. Design Cons ideration s

Carl Sunshine

A Project AIR FORCE report \~~ ‘ I 6~~~~~~~~~~

prepa red fo r the U

United States Air Force C

I ~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _

t~Li r iB~~~~~~~~~~~~~~~~ c~se.

d ~
\ ~~~~~~~~~~~~~~~~~~~~~ I Rend

L~
1TA MONeCk CA ~O4O~

The research rep6rted hire was sponsored by the Directorate of Operational Require-
ments, Deputy Chief of Staff/Research and Development , Hq. USAF under Contract
F49620-77-C-0023. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright nota-
t ion hereon.
Reports of The Rand Corporation do not necessarily reflect the opinions or policies
of the sponsors of Rand research.

/

1

Published by The Rand Corporation

--
_ _

i:~ct ~~cc~~ r

~~~ ____________
sL c u n ; rv  CL A . ; , •, r p ’ ~ ~~~. OF ~~~~~~ ~~~~~ 14~ f) ~~~ ~~~~~~~~~

REPORT L)OCU ~CNTAT ’O~ PA3E }~EAD INS TR ~ C u ’ ~S

- ~~~~~ 
Ac~T~~WJi. NO. 3. R CC I~- i~~N T S  CA T A L Q U .~UME~~R

4. 1 ITLE(~~ d S.~bsIfI.) 5. ‘YP C CF R~.PO~~T 4 PERIOD COVERED

Inter process Ccrrrnunicatiort Extensions ~or the ‘J Inter im
UNIX Operating System ” I. Design Considerations S PERFORM NG ORG RE~~ORT NUM8ER

7. AU T~~OR(.) fe . CrJ~~T h A C T  OR GRANT NUM8ER(.)

Carl A/Eunsnine 
___JJ~~ 

F4~62O-77-C-OO23 ,‘ L—

9. PERF ORMING O R CA N ZA T IOM NAME AND ADDRESS 0. PIIC,GRAU ELE MENT . P F* O J Z C T . TA SI(

The Rand Corcor3t on — 

AREA & W OPè~ UNIT NUMBERS

1700 M a i n  Street
Santa Mon i ca , Ca . 90406

I I.  CO PITR O LL . ~ ’ G O~~’ ~~~ME AN~~~A D ~~E~~S 
—— __________

Project AIR FORCE Off ~ce (AF/ROQA) ~i~) Juno~~~~j 
—

Directora te of O~erationa 1 Requirer~en ts
Hq US AF , ‘.~~shinatc n . D.c. 20~30 ____ 3

~

_______ _______________

* 4. MCNITOi~~N~~ t.~~E .IAM~ & A O DRE SS(1/ i~i1e,.n ( ~rov~ Co- . trGItI l ig O1(~c~) IS. $EC UPITY ’~ t~*~ Z. .(O t (hi. r•po

UNCLASS1~I
’

15a . O~~C~.A5S l ’ ICATIO~1 Cw ~1GPA D RC,
SC. DULL

IC.. DIS R !c . U ’OS A T ~ .~~~ NT (o hi .  ~~ po et )

Appr oved for Pi~b 1ic Rele .~se; D s t r ibudur i  Unflrii ted

* 7. C. IST FI8UT~CN  ~T A T E V E ~N 1 r~.f the ab~ (ra~ S or ,te.ec ~ In ~~ock 2~ , if d! I f . rera ~rom R..p~ r()

No restrictions

I~~. SUPPLEME ~~T A N V  Nc’ rE S

19 P L Y  ,.~~ R C S  .~ ~~~~~~~~~~ o ~~~~~ . 
,,‘d. i’~~. ce~~esty ~~~ id~r rI1y ~~ t io~ k ,‘ur ~ .e r )

Data Proce i~ j Op~ratin g Systems (Ccuncuters)
Data Tr3rs~~ss~crI in te rp roceS S Corrr;,unicatiOr~
Ccm~~ ter ~~~~ ;~~~.s Pr~~ j a r .~s

Cc~d ~rt ’~ T ” ~ r:
_ _ ~2~~~ L~~~.~ ’i’ . ’ ..~~~ . .  . . . ~~~~~~ —_____ ___ —
20 A B 7 ti AC ’ Cs i’no. , w i .~ ’ % . , ’ a ,i . . ’ , , c e  a ..~~ d (~. lii i .

sir’ rEv~’-~e ~i~ e

•~ /6 ~
‘V ., ~~~~~

~~.a  (~~ I,. t I, .Lj~~~~~~ (
:~ r., ~~~~~~V U j ’ .’.’ ~~~~~~~~~~~~~~~~~~~~~~~ I c  a ; ,  ‘~~~~ .,

— —~~~~~ 
-

~~~ 
-

~~~



r ~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (JN(.t / ~ . S 1 ’ !F D
S E C U R I T Y  C L A S S I F I C A T I O N  OF THIS PAG~~(Wh . 0.1. ~~~~~~~~

The UNIX operating system for the PDP-11 series
of minicomputers has gained wide popularity in
academic and government circles. This report
considers interprocess communication (IPC)
facilities with the goal of developing an im-
proved IPC capability for UNIX. An outline of
the major issues involved in providing IPC is
developed based on a survey of the literature ,
and UNIX IPC facilities are described in terms
of this outline. By considering new applicatio ns
being developed under UNIX , .everal shortcomings
in the standard IPC facilities ~re identified ,
including the inability of “unrelated” processes
to communicate , the inability to wait for multiple
inputs , and pr imitive synchronization facilities.
Techniqies to provide desirable improvement s are
suggested , inc luding r*~~n’t ~ d p~~i~~ 5 , ~~~~~~ ~~

iim~roved sinna
’s, and message facilities . Ports

appear to have the highest benefit/cost ratio ,
and their impie:i~entation is rlescribed in a
companion report , R-2064/2-AI. . (Author)

U~CLPSS111E~
SItCU~~ITY CL C S S ; F I C A ’ I O W  ØF ~~~~~~~ ~~~~~~~~~~~~~~~~ •

k~ 
‘ . . . . ..

.

~~~~~~~~~~~~~~~ ~~~~~ L_



~~~p!r 

. . 

._— - —--——..

R-2064/1 -AF
June 1977

Inter process Comm unica tion Extensions
for the UNIX Operatin g System :

I. Design Cons iderations
.
~~~~~. 

.
. ., , a

r ~~~~~
Carl Sunshi ne ,

A Project AIR FORCE report
prepa red for the

United States Air Force

Rend
SANTA MONICA. C A. Q040b

AP PROV Et) FOR PUBLIC RU E. \ S (. OISI RIBUTI O N UNLIMIT ED

~~~~~~~~~~~~~~~~~~~~~~~~ 

. .,: .



I

N

~~~~~ ~~~~~~~~~~~~~~ 
• ‘
:~~~~~~~~~~~~~~ - - -

~~
-- - — — - —.

~~~~~~~~~~
— -

~~~~~~~~~~


iii

The UNIX operating system for the PDP-ll series of minicomputers

has gained wide popularity in academic and government circles .

Under the Project AIR FORCE (formerly Project RAND) study effort

“Information Sciences Research ,” The Rand Corporation is engaged in

analyzing , evaluating , and developing computer operating system

concepts with UNIX. Recent work has dealt wit.h such topics as

security , file systems , performance , user interfaces , network access ,

and office automation .

This report , together with its companion report R-2O64/2-AF ,~

describes the current state of work in the area of interprocess

communication. A reasonable familiarity with UNIX is required to

understand some detailed points , but sufficient background material

is presented for the reader with a general knowledge of operating

systems to follow the discussion . The report is aimed at computer

system analysts and researchers concerned with operating systems

supporting multiple processes , particularly for interactive

applications .

* Steven Zucker , Interprocess Communication Extensions for the
UNIX Operatit~g System: II. Implementation, The Rand Corporation ,
R-2064/2-AF, June 1977

~~~~~~~~~~ - :~ .
~~~~ . ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~


--

~~~~~~~~~~~~~~

-— -- --—-----‘ - - - - - -

~~ 

r
~~~~~eazv~ ,?~~w ~~~~ -.---. ~ 

--- -

~ ~~~~~~~~~~~~~~~~~~~~~~~

V

SUMMAR Y

In develop ing new applications for the UNIX operating system ,

several shortcomings in the standard interprocess communication (IPC)

capabilities have become apparent. To fully understand these

problems and to develop effective solutions , a study of IPC

techniques , including a survey of existing implementations , was

undertaken. Cooperating processes within a computer operating system

need to communicate for two main purposes: data transfer and

synchronization. In general , port-like facilities are provided for

transfer of streams of data , while semaphore or signa l type

primitives provide for synchronization. Message facilities share

features of both data transfer and synchronization .

To provide a framework for discussion , Sec. II presents an

outline of important features that any IPC system must include . The

main points of this outline are connection establishment , resource

allocation , functions available , receiver unbiocking , and relation

with other input/output . Section III describes the standard UNIX IPC

facilities , pipes and signals , in terms of these features.

Section IV identifies major shortcomings of the standard UNIX

IPC facilities by considering several developing app lications , such

as teleconferencing , network access , and user agents , that would

benefit from improved IPC facilities . Most notable shortcomings

are the inability to wait for multiple inputs , the inability of

“unrelated ” processes to communicate , and the primitive signaling

facilities (see Table 2). A set of potential techniques for

I
—.. . —~ ~

. .

a ~t- I— ..:

— —------ ~~~~~-- - -.- -- .. - --- ~~~~~~~~~~~~~

vi

improvement is also developed in the course of this dISCUSSLOO .

Section V elaborates these techn iques , including named ports ,

message ports , improved signals , and message faciiities that

might provide desirable new capabilities. Named ports allowing

communication between unrelated processes and/or message ports

identif ying the source of potentiall y multip le inputs to the port

appear to have a high benefit/cost ratio. Implementation of such a

facility is described in a companion report R-2O64/2-AF .~ Several

attractive improvements to synchronization primitives have also been

identified , but further research is needed to finalize an

implementation plan in this area .

* Steven Zucker , Interprocess Communication Extensions for the
UNIX Operating System: I Implementation , The Rand Corporation ,
R-2064/2-AF , June 1977.

I
E S . ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~~~~~
---

~~~~~~~~~ ~~~~~~~~~~
. a- —--.

v i i

CONTENTS

PREFACE iii

SUMMAR Y V

Section
I. INTRODUCTION 1

II. ELEMENTS OF IPC 3
Connection Establishment 3
Resource Allocation 5
Functions Available 6
Receiver Unbiocking 7
Relation of IPC to Other I/O 8

III. CURRENT UNIX IPC 10
Connection Establishment 10
Resource Allocation 11
Functions Available 11
Receiver Unbiocking 12
Relation of IPC to Other I/O 13

IV. SHORTCOMINGS OF CURRENT UNIX IPC 14
Teleconferencing 14
ARPANET Software and Well-Known Processes 16
RITA 17

V. PROPOSED IPC MECHANISMS FOR UNIX 19
Message Ports 19
Interrupt on First Write 20
Named Ports 21
Improved Signals 21
New “Post” Mode of Signal Processing 22
Semaphores 24
Simple Message Facility 24
More Powerful Message Facility 25

VI . CONCLUSION 27

REFERENCES 29

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~~~~‘~“ r d  ~
I . INTRODUCTION

.

The U N I X  operating system for the PDP-ll series of minicomputers

has gained wide popularity in academic and government circles. This

report considers int.erprocess communication (IPC ) facilities with the

goal of develop ing an improved IPC capability for the UNIX operating

system [II . A reasonable familiarity with UNIX is required to

understand some detailed poin ts , bu t sufficient background material

is p resented so that most of the discussion should stand on its own .

To see where UNIX stands in relation to other operating systems

and to apprec ia te al ternat ives , exis ting IPC facilities were

surveyed. Section II presents an outline of the major issues

involv ed in providing IPC capabilities. The discussion focuses on

func tional capabilities and implementation approaches rather than on

theory (i.e., developing a formalism to represent IPC). Issues are

discussed at a fairl y general level for brevity, although the

references cited provide more detailed examples.

The remainder of this report applies to UNIX more specifically.

Section Ill describes the current UNIX IPC capabilities in terms of

the outline developed in Sec. II. Section IV explores some proposed

app lica tions (such as teleconferencing and network software) that

would benefit from powerful IPC capabilities , pointing out the

shortcomings of current mechanisms , and identify ing additional

capabilities that would be desirable. Summaries of current

shortcomings and desirable additions appear at the end of Sec. IV.

S e c t i o n  V presents several mechanisms that mi ght he used to extend 

a- . • ~~~.. .~~~~~~~ .. 
. 

. • ,... ..  . .~~~~~~.



-- ~~—- .  ——-a-—- - - - a -  - —  - a - .  -~~~~~~~~

2

UNIX IPC capabilities i n  the  des i r ed  directions arid beg i n s  the

process of evaluating alternative techni ques. A matr ix showing the

cap ab i l i t ies prov i ded by both  current and proposed mechanisms ends

the section.

Assuming that a multi p rocess environment is provided by the

operating system (process creation , scheduling , protection), IPC

facil ities serve two main purposes: ~~~ c h r o n i z at i o n  and d at a

t r a n s f e r .  Depending on which of these functions is paramount , TPC

facilities typicall y take different forms . Synchronization may be

provided by P and V semaphores [2J , BLOCK and WAKEUP [ 3 1,  W A I T  and

SIGNAL (4 ,5 ] ,  EVENT FLAGS [6 , 7 ] ,  software or pseudo-i .terrupt .s [8 ,9(

Bulk data transmission is typ icall y pr ov i ded by shared segments

(6 ,101 , or PORTS [5 ,6, 11 ,12)  w h i c h  a l l o w  READ and  WR ITE commands much

l i k e  normal files. The distinction between these two applications is

never comp le te , since synchr oniza ti on primit ive s can be used to

transmit data (Morse code at least), while the presence or absence of

data can he used for synchronization purposes. Retween these

ext remes  is a c l a s s  of techn i ques such as MAILBOXES (5 , 7 , 10 , 13 1 and

MESSAGE QUEUE S (6 ,14,151 which comb ine reasonably convenient data

transfer and synchronization . The following section identifies the

important components of these IPC techni ques , al though some

consider ations apply most clearly to a limited class of techniques.

~~~a-~~~~~~~:


r - - a-..

~~~~~

.- .-

~~~~

-. -,-, . - .

~~~~

— - - , a- — - - -

~~~

- -

3

II . ELEMENTS OF IPC

This section outlines the important considerations in designing

or understanding an IPC facility . The outline presented below is by

no means the only possibIe organization for analyzing IPC systems ,

and an author with different background or purpose might well produce

a different one . Nevertheless , the following five areas represent

one attempt to impose order on this highly multidimensional topic.

CONNECTION_ESTABLISHMENT

For both data- and synchronization-oriented systems , the range

of other process~s that a given process can communicate with is of

interest. In systems with rigid process hierarchies (e.g. , tree-

structured), communica tion is typically limited to processes with a

common ancestor. In other systems , any process is a potential

communica t ion p a r t n e r .

In e i ther case , the a b i l i t y to learn a partner ’ s identity is

f u n d a m e n t a l . C e r t a i n impor tan t processes or services may have

“w e l l - k n o w n ” or f i x e d names . To communica te w i t h a dynamica l ly

created process , however , the name of the process must be imp l i c i t l y

a v a i l a b l e (e . g . , to a c r e a t o r p r o c e s s), or must be explicitl y

requested through some system directory facility (perhaps itself a

well-known process). The name of the communication path may be an

actual process name , a PORT name that must be associated with a

process as part of IPC setup , a buffer address , a ‘ communications

area ” address , e t c .

.
‘ . a . . I— I’. V . . — . ..

~~
- ,-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---- - - a- -.-

-.

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -- -... 
- —  -

4

More than one process may be allowed to produce , test , or

consume on a connection. MAILBOXES are typicall y many-to- uric , while

MESSAGE QUEUES and event channels are many-to-many . PORTS may be

one— to—one or many-to-many . SIGNALS may affect a particular process ,

an arbitrary single wa it ing process , or all pro cesses wai t i n g  for a

given condition. In many-to-many imp lementat i ons, the identity of

par ticipants may be known (e.g., source and destination in messages)

or may be invisible . Source identification serves at least three

purposes: dis tinguishing inputs from different sources when this is

desirable ; provid ing a name for return communication , and p r o v i d i n g  a

name for authoriza tion checking. A sing le ID does not necessarily

serve all three purposes , so mul tiple IDs may be desirable.

Communica tion paths may require explicit creation (e.g., binding

por ts to processes) or may he imp licitly associated with proc esses

(e.g ., signals) . Paths may provide only one-way (simplex)

communications , two-way (duplex) communica tions , or simp lex with

reply capabilities . In the latter case , repl ies may return results

(function call type interaction) and provide status information

(acknowledgment of receipt for reliability or synchronization

purposes) .

Authorization for communication may be imp lemented by

controlling the acquisition of names (i.e., the name itself serves as

a capability and knowing a name guarantees ability to communicate),

or names may be public with other (or no) mean s of access control.

Whateve r the entity named , the acquisition and authorization of the

name must occur before communication can proceed. Authorization may

occur once when a connection is exp licitl y opened , or on every

~~~~~~~~~~~~~~~~~~
‘

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ::..: .



— — -—~ a- - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ a - - .  . . . ,--  --a- -- -~~~~~~~~~~

S

communication if there is no permanent connection established.

In distributed systems the identity of a partner must include a

location. This location may be specified by the source , or

determined “automatically ” by the system (in which case the 1PC

supports “location independence ”). In a monolithic system , all

routing is done by a single switch so location is not a factor.

Connection establishment in distributed systems frequentl y includes

agreement on other mechanisms such as explicit error and flow control

in addition to names. Therefore IPC with remote processes often

presents a different user interface than local IPC , althoug h some

systems have taken pains to make them appear identical.

Process termination normally includes terminating all

connections to the process as part of cleanup activities. Processes

may also be allowed to explicitly close connections or refuse

communication before their termination . This raises the questions of

how to handle any data sent by or to be received by the terminated

process. Other processes involved in the closed connections may be

notified of the termination immediately, or later if they attempt to

use the closed connection , or not at all.

RESOURCE ALLOCATION

Resource allocation for IPC is primarily a matter of buffer

allocation. Whenever queues (of data , signals , or process IDs) are

involved , either the source , the destination , the “own~ - ” (e .g., of

an event channel), or the “system” must provide storage space. “Flow

control” concerns limitation of source and destination activity so

that resources at both are not exceeded , while “congestion control”

b”-— ~~~~ . 
-__ L - ----—a- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— a-- _— -.-- --.-- ----_- .
~~~~~~

— - -



6

involves equitable allocation of system resources among multiple

connections to avoid hogging of storage space or processing power by

any one source and destination . Buffering of each connection

independently by the users eliminates the need for system resources

but precludes the statistical advantage of a common (system) buffer

pool. With event flags and some pseudo-interrupt systems , queuing is

eliminated altogether. Since only the occurrence or non-occurrence

of an event is maintained , subsequent instances of the event need not

be queued.

FUNCTIONS AVAI LABLE

As noted in the introduction , data-oriented IPC systems

typically provide READ and WRITE commands with a count argument .

Message systems provide RECEIVE and SEND commands , which per form both

data transmission and synchronization . These data transmission

commands may or may not block (cause the executing process to be

suspended) until they are satisfied by matching communication .

Blocking commands impose tighter synchronization so that

communicating processes essentiall y become coroutines. Non-blocking

commands are des irable to allow independent parallel activity by the 
V

producer(s) and consumer(s) (subject to resource limitations

discussed above). However , non-blocking commands are substantially

more complex because they require asynchronous (delayed) notification

of status and identification of which command the reply refers to.

This notification may be provided by pseudo-interrupts or signals if

they are available as synchronization facilities.

ka-
,

-
, 

~~~. a . -  . a . . . .. . . - 

,.-
a- -

7

Non-blocking commands require storage sj~ace to queue pending

requests (see above), while blocking commands may be said to queue

commands in time using the existing process suspension facilities

to queue waiting processes.

Synchronization is provided by WAIT and SIGNAL coi~nands or

pseudo-interrupts. Interrupts force immediate attention , while

signals must be explicitly requested by the process when it chooses

(WAIT command). Of course , the WAIT command is designed to block

until an appropriate SIGNAL is generated. In systems with

preemption , the SIGNAL command may invoke the scheduler and result in

preemption of the signaling process if the signaled process has

higher priority .

Some systems provide a TEST command to indicate whether signals ,

data , or messages are available. Polling with the TEST command can

partially overcome the limitations of blocking data transmission

commands , but this requires periodic testing or “busy waiting,” which

consumes processing resources .

Produce , consume , and TEST commands may operate sequentially (on

the next item available), randomly (on any item), by priority of

available items , or selectively (allow specification of a particular

type of item). The type of an item may be imp licit (e.g., which of

many event channels the item is stored in) or explicitly stored as a

field in each item (e.g., the source process or message type).

RECEIVER UNBLOCK ING

In data-oriented IPC , a RECEIVE or REAl) command normally returns

when it is “sat is f i e d .” In s t ream mode , the consume r specifies the

- ,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _

. a -
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —-..-

~~~~

-a - — a - - -
.-,

8

amount of data (byte count) that must be available before the command

is satisfied. In messag~ mode , the command is satisfied at a

p~~~1ucer de signa ted poin t (the end of the message), al though the

receiver also specifies an upper limit (buffer size) for data

transfer that satisfies the command even if a complete message has

not been received.

Stream mode is appropriate when data are to be interpreted as an

infinite stream of bytes and the producer has no special knowled ge of

log ical unit size . Message mode is hi ghl y desirable when data

consist of variable length logical units so the producer can initiate

processing at the end of each unit. Message separation is imp licit

for fixed length messages , or may be implemented with a length field

prefix (header), or a special end-of—message character suffix in the

data stream for variable length messages.

RELATION OF IPC TO OTHER I/ O

In addition to explicit TPC , processes interac t with their

env ironment via files and interrupts. Files typically correspond to

data-oriented IPC , while interrupts correspond to synchronization.

To unify these types of interaction with IPC , systems have attempted

to make IPC “look like” files and/or interrupts , or have made files

and interrupts look like IPC (e.g., messages to a file handler or

“external” process , or interrupts converted to messages). As noted

above , interaction with remote versus local processes in distributed

systems may also be handled either uniformly , or with distinct

interfaces . Unification of file , interrupt , and remote process

interaction provides a great deal of flexibilty (e.g., a process can

~~~~~~~~~ . . . - . _ :,. 
~~. ..  :.. 

— —a---—-



a-

9

subs titute for .i tile) but may require additional work by the

“sys tem” in converting uniform process commands to appropriately

control interai~tion with different elements of the environment .

il_a- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r - .  a-

~~~~~~~~~~~~~~~~~~~~~~

. _

10

I l l . CURRENT U N I X IP C

This section describes the current UNIX iPt fa i l i t i e s in terms

of the general consid erations developed i i i S e . . I I . UNIX p roV ide s

two facilities that directl y support IPC : p ipes ,ind sign als. Pi pes

are essentially files used for data tr an sfer between pro essi s , w h il e

signals (the KILL and SIGNAL commands) allow processes t o iusC

pseudo- interrupts and to specify their handling.

CONNECTION_ESTABLISHMENT

Pipes can only be used between processes w i t h .i (Oiniuoii

cooperative ancestor (FORKed processes) that, sets up the p Ipes.

Si gna l s can onl y be t r a n s m i t t e d between p r o c e s s t s owned b y t h e sam e

user (normally also common descendants). No other ,~~cess c o n t r o l s

are imposed or available on IPC . The file descriptor for a pip e must

be passed to crea ted processes. The identity of processes to be

signa led must be known to the si gnal i ng proc ess returned by FORK

command). The ARPANET software (NCP , TELNET) provides for data

transfer and synchronization with remote processes and potent ially

also with unrelated local processes , but the cost of network

connections effectively precludes their use for local IPC .

Theoreticall y, a named file could be used by arbitrary unrelated

processes in the same way as a pipe , but the file might grow very

long, and readers would receive an end of file (EOF) instead of

blocking if they got ahead o writers. The creation and deletion of

well—known fil e names ire also used for mutual exc lusion in same

I..... ~
a. - a . - - a , a. . ~~ I a .

- •
--- — - - —--a--- - -.~~~~~.—.-- -- --——- -.-- .—--—.---- .- — ---—.-— ..---- — --

11

cases (e.g., printer assignment).

Multi ple processes may read or write on a pipe if so initialized

by their creator. The identity of producers is not preserved , and

data from different WRITES may be interleaved . Hence a pipe is not a

reliable multiplexer of input data unless producers synchronize their

activity by some other means .

Pipes (and other files) are closed when a process terminates ,

and may also be closed exp licitl y by the process. Writing a pipe

with no readers causes an error , while reading a pipe with no writers

returns an EOF .

RESOURCE_ALLOCATION

Buffer space for pipes (and file I/O) comes from a common system

buffer pool. As blocks are filled by a producer , they may be written

to disk until consumed. As a means of flow and congestion control ,

the producers are blocked when they have written 4096 bytes until the

consumers catch up, at which point written blocks are freed and the

pipe is reset. (At Rand , pipes are reset wheneve r the consumer

catches up with the producer.) For signals , resource allocation is

trivial , since the last signal received is stored in a single

location for each process. Any previous signals are lost (not

queued).

FUNCTIONS AVAILABLE

Pipes provide simp lex stream data transfer between processes.

The READ command blocks until data are available (see below). The

WRITE command blocks only until data are transferred into a system

.
~~~~

. . .
~~~

. •

~~ ‘ . I ’ L ’ t_
- a - — . -a--- .

-- a- - . - - - a--. . —

12

buffer and there is no status returned to indicat e whether the data

were succes sfully received by the consumer. Standard UNIX provides

no TEST command for pipes , bu t Rand has imp l emenited the EMPTY

command , wh ich returns a Boolean value indicatin g whether a READ of

the p ipe would block (hut no information is given on the amount of

data in the pi pe).

Pseudo-interrupts to a particular process may he caused by the

KILL command . The processing of these si gnals may he set using the

SIGNAL command to ignore , defaul t (kill pro cess) , or a special

handler routine for each type of interrupt. For most si gnal types ,

proc essing is reset to the defau lt mode whenever a signal is received

(but may be reinstated by an interrupt handler). The identity of the

signaler is not available to the si gnaled pro cess. The number of

lega l si gnals is a system generation constant. Currentl y abou t 7

s ignals are ava ilable for general use , while 13 have st andard

meanings . Since si gna ls are not queued , there is no TEST command

app licable to signals. A process cannot detect that a signal has

been lost because of the occurrence of a more recent si gnal. An

unfor tuna te side ef fec t of si gnals is the abortion of certain types

of kernel functions in progress when a signal is received .

Preemption occurs if the signaled process has higher prio rity than

the signaler .

RECEIVER UNBLOCKING

In a normal p ipe (or file) READ , if some da ta are available , the

command re turns w ith the reques ted number of bytes , or all the

available data , whichever is smaller. Hence the READ may be

. — -

- ~~~~~~~~~~~~~~~~~~~~~~
a .

_ _T a -~~~~ii~~~~~ _ _ _

, , a - a - a - ,.~

13

satisfied by several smaller WRITE commands , or part of one larger

WRiTE . The boundary between WRiTEs is not preserved , and there is no

way fo r a wr i t er to force completion of a READ (i.e., wri te an ROF).

If a p ipe is empty , the READ blocks until completion of the first

WRITE .

If a pipe is not open for writing by any process , READ returns

an EOF condition. Rand has added a command to “write ” an EOF (causes

EOF condition when a READ is executed) without closing the pipe .

This command was added to allow a pipe to function like a teletype ,

which can cause zero characters (an EOF) to be “written. ” This

pseudo-EOF could also be used to facilitate message mode operation on

pipes where a large READ request would be satisfied at a

producer-specified point .

RELATION OF IPC TO OTHER I/O

Pipes , device I/O , and files are purposely designed to look as

much alike as possible , allowing simple substitution of one for the

other in almost all cases. A few minor differences we have noted are

(potential) universal accessibility of files versus the hierarc hical

access to pipes , the 4096 byte write-ahead limit on pipes , and the

peculiar characteristics of teletype “files.” Data exchange with

remote processes on the AR PANET is also achieved by READ and WRITE

commands to pseudo-files that have been appropriately opened (network

connection establishment). Hardware interrupts (instruction traps)

are converted to standard signals , allowing common handling of

ha rdware , sys tem , and IPC signals.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ . - —
~~~~~~

—-
~~~~~~

.- - -



-— —a- - -a---— — a--a--- -- a - — .  --a--. —a- .—.--—-- ——— - —a- - -- .— _ .__ , a-.._ .~ ~~~~~~~~~~~~~~~~~ — --- a-.- , - — .  —

14

IV . SHORTCOMINGS OF CURRENT UNIX IPC

This section tries to identify the shortcomings of current UNIX

IPC capabilities by considering severa l example app lications that

would benefit from improved IPC facilities. Such additiona l IPC

facilities are outlined , while the detailed proposal of technique s

to imp lement them is left to Sec . V. Summaries  of cu r ren t

shortcomings and desirable additional capabilities appear at the

end of this section.

TELECONFEREN CING

A prototype teleconferencing system has been developed to allow

simple real- time interaction between UNIX users . Basically, the input

from each participant in the conference is copied to a conference

manage r process for display on other participants ’ terminals. Ideally,

the manager should be sleep ing while it awaits input from any of the

participants.

This is currently difficul t because : (1) if the data arrive via

multiple pipes , it is only possible to READ and wait for one p ipe; and

(2) if the data arrive via a sing le pipe , the manager will wake up on

any arrival but cannot determine the source of the data . A solution

for (i) is to allow non-blocking READS (so multiple pipes could be

read) and/or interrupts on the arrival of data in an empty pipe . (If

multi ple processes have the pipe open for reading should they all he

interrupted?)

A solution to (2) is to create a new sort of p ipe (a “me ssag e

I ~~~~__ 
~__J~~ -‘~ —~~.- -— .—~--- 

.. 

—a-- 

—
—— 

ii— 
;___. .__

~~~ ~~~~~~~~~~~ — a-a- —


F- ~~~~ . -.- - . a - - -— - ----- . ,— - - . — — a - . — - - --
-‘I ’

port ”) , where the source ot dat. . i s i d e t i t i i i e d . T h i s changes the

c h a r a c t e r of p i pes f r o m s t r ea m t o message , w i t h each c h u n k of data

written (each message) preceded by a header g i v i n g source process ID

and length. For writing, a message port would be identical to a norma l

pipe. In reading a message port , the reader would receive the source

identification along with the data . Further delails of this mechanism

are discussed in Sec. V.

In a d d i t i o n to data i npu t s , the conference manager also receives

contr ol commands from conference participants (e.g., show st atus , add

parti c ipant, quit). These commands often deserve prompt attention and

should not flow over the same path as norma l input data. Signals

c a r r y i n g a sma l l amount of da ta w o u l d h a n d l e t h i s f u n c t i o n n i c e l y .

O t h e r w i s e , commands and da ta w o u l d have t o be mixed on a sing le input

pa th , requiring some special f o rmat to d i f f e r entiat e them and pos s i b l y

d e l a y ing commands beh ind d a t a .

In g e n e r a l the c o n f e r e n c e m a n a g e r or o t h e r p rocesses may wan t to

spec i fy more cc plex a c t i v a t i o n c o n d i t i o n s t h a n the OR of severa l d a t a

inputs (e.g., inc lud ing t ime events , sig na ls from other processes or

AND of condi tions). This suggests supporting general Boolean

express ions fo r a c t i v a t i o n c o n d i t i o n s . As a m i n i m u m , improved

signaling facilities are needed (e.g., av oiding los s of signals ,

identif ication of signa ling process , more si gnals avai l able , not

aborting system functions in progress) This may require substantial

system changes. The ELF system 15 1 p r o v i d e s a good example of a

flexible IPC sign.il system . More simp ly , event flags for each type of

s i g n a l may be ,d, 1iia te if multip le occurr ences of t h e same s i g n a l a t . ~

In i m p o r t a n t . .

•
~~~~~~~~~~~~~ .

~~
—

~
--

‘
.~:.-

• 

~~~ 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--



- 
16

ARPANET SOFTWARE AND WELL-KNOWN PROCESSES

A recurring situation in network processing (e.g., TELNET , Fi l~

Transfer Protocol) is the need to listen for input from either user(s)

or the networ!- . As noted above , it is not possible to have a REAl)

pending on both the network and user inputs , resulting in various

awkward ways around the fundamental dilemma . Message ports present a

p a r t i a l  s o l u t i o n  to t h i s  problem .

Another possibility for network p rocess ing is to make the  NCP ~it

least partiall y a user process. Althoug h problematic on efficienc y

grounds , t h i s  a l l o w s  ne twork  development  and debugg ing  to go on w i t h o u t

impacting othe r users of the system. Only the fixed IMP device driver

would remain in kernel code . If the NCP were a process , other

process es might access it via pipes . This would require establishment

of p ipes between unrela ted processes (e.g., user TELNET and NCP), wh ich

is not currently possible . A facility for naming pipes , wh ich wo u ld

then be called “named por ts ,” might help to overcome this limitation .

A named port essent ia l ly  uses the f i l e  system to a l low c rea t ion  and

reference to a named entity that would then be mapped to a norma l

(or augmented) pipe facility . Ports would provide only one-way

communic ation , so a second port for return traffic to the user process

from the NCP would be necessary . Further details a-e presented in Sec.

V.

The assignment and distribution of port names for well-kno~

processes (e.g., NCP , line printer process) are non- trivial problems

demanding a good deal of thought . Association of ports with transitor y

user processes (e.g., between two shells or screen managers to “ link ”

teletypes) is even more problematic. Typ ically, some directory or 

. . , , . _ , . . t  

- -



17

globally accessible system data base is used to maintain the

association of process or port IDs with well—known names (user IDs or

service types). F’or examp le , the TENEX “WHERE” command returns all t h e

-~ processes (terminals~i currentl y active for a given user.

RITA

The Rule-directed Interactive Transaction Agent (RITA) system !161

currently employs thr€-e processes , primarily to make additional memory

spa ce available to the system (each process is mapped to its owii 64K

v i r t u a l  m e m o r y ) .  The three processes  e s s e n t i a l l y pass  c o n t r o l  among

themse lves  s e q u e n t i a l l y ,  a l t h o u g h  t he r e  are  some cases where parallel

activity might be b e n e f i c i a l .  Such c o n c u r r e n t  a c t i v i ty  w o u l d  l)e

f a c i l i t a t e d  i f  processes  could  be w a i t i n g  f o r  i n p u t s  f rom m u l t i p le

sources (e.g., teletype and another RITA process). A large number of

one byte pipe transfers are done to synchronize RITA process activit y.

A s imp le message facility or signals carry ing data could simp li fy this

interaction. The ability to read a specified number of bytes (a

comp lete message) would also benefit routines that know the format of

the ir inputs in advance .

Tables I and 2 summarize some shortcomings of UNIX and some

desirable f eatures not pres ently provided by the sys tem .

~~~~~~~~~ - ~~La- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~ .. - ,  _ _ _ _



- ~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~ -- — a- 
;~~~~~~~~~

— - —  a-- -.- - - .  --- — - — —  -

18

Table 1

SUMMARY OF IPC PROBLEMS WITH CURRENT UNIX

Data Transfer (pipes):
o Inability to wait for input from multiple sources.
o No communication between unrelated processes.
o No source or type identification (sometimes this is

a feature , not a bug).

Synchronization (signals):
o Some pending system (I/O) functions are aborted.
o Signals can be lost (only most recent kept).
o No access control (besides same user).
o No communication between processes of different users.
o No source identification.

Message :
o No message facility .

Table 2

SUMMARY OF DESIRABLE IPC FUNCTIONS NOT CURRENTLY
PROVIDED BY UNIX

Minimum

o Ability to wait for multiple inputs.
o Reliable synchronization primitives (no lost signals) .

Highly Desirable

o Ability to wait for (block until) the first of
many conditions (including pipe and termina l input ,
timer , signals from other processes).

o IPC to well-known but unrelated processes.
o Identity of signaling process available to signaled

process.
o Some data passed along with signal.
o Simple message type IPC .

Ideal?

o Message !PC with source , length , and message type
available to receiver. Selective test and receive
capabilities. Messages queued (in space).

o Boolean expressions for process activation conditions.

~~~~~~~~~ . -.--

,

. ~~~~~~ . ; a - .~~~_~~~~~~~ :1’~~~ :~~
-
.

-
~~~~~~~~

‘-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ J


a-- -~~~~~~~~

19

V. PROPOSED [PC MECHANISMS F~OR UNIX

In this section we outline the imp lementat ion of techn iques to

provide the desirable IPC capabilities developed iii Sec. IV . The

mechanisms introduced in Sec. IV (ports and signals) are described in

greater detail and some additional techni ques are presented. A

complete descrip tion of an implementation of ports may be found in a

companion report 117 1 . We do not provide a comp le te evaluation of

these techni ques , leaving that for further discussion ; but

generali ty, ease of imp lementa tion , compatibility , and harmony w it h

the rest of UNIX have motivated the selection of these techni ques and

no doub t will be important factors in their evaluation . A summary of

capabili ties provided by both existing and proposed UNIX IPC

mechanisms appears at the end of this section in Table 3.

MESSAGE PORTS

Message ports extend the norma l pipe facility by adding a header ,

providing source (process and/or user ID) and length information to

the reader. This allows a process to receive (and wait for) input

from multi ple distinguishable sources on a single p ipe. Data

transfer also becomes more message-like than stream-like .

As noted above , writing on a message port is indistinguishable

from a normal pipe , while readers must know they are dealin g with a

port . To read a port , a process would first read the header (fixed

length) and then the remainder of the message . Alternative l y, a new

command might be imp lemented to return header information prior to or

i n ~,;i r .t l l eI w ith the normal READ . If nitil ~~i jiIi ~ re,iders aj~ i l l o w et i II

a-

20

a port , other processes should refrain from reading until a complete

message is consumed by the current reading process. This constraint

must be enf orced by the “sys tem” or by exp licit cooperation between

the readers to ensure the integrity of header and message structure .

Message ports are a very attractive addition because they help

remedy a serious IPC deficiency at small implementation cost while

preserving the feeling of UNIX. Some problems remaining are sharing

a port between sources , and selective read access. For example , the

conference manage r described in Sec. IV may receive a long listing

from one conference part icipant which fills the port , preventing

other processes from getting their output to the manager. Even if

other processes do get data into the port , the manager may want to

selectively read or test for the presence of data from a particular

process , rather than the first data in the port . This may be

performed by a (user) routine which reads a port and sorts its

contents by source (buffering in core or on disk), or may be provided

by the system . The former approach may be inefficient (extra data

transfers) while the latter requires substantial new system code.

INTERRUPT ON FIRST WRITE

As noted in Sec . IV , this would allow processes to wait for

multiple pipes by blocking themselves until interrupted by the first

WRITE on any empty pipe . Reliable operation requires improvement of

the signal system so interrupts are not lost and so pending I/O is

no t aborted if the process is not blocked (e.g., is reading another

input). It would also be convenient to pass the information on which

pipe caused the interrupt to avoid poll ing with the EMPTY command .

L~~ :~ 2~~ ’ ii ’ .~~~~.~ .a-. -

- - - -- -a- a-

2 1

NAMED PORTS

Named ports are another extension to the norma l pi pe fac i l i t y to

allow IPC between unrelated processes. As noted above , ports may be

imp lemented as named pipeA , using the UNIX file system to support

naming. This again uses existing UNIX facilities (pipes and files)

to maximum advantage . Ports may be based on the standard UNIX pi pe

facility with only naming added , or may be based on an augmented pipe

faci l i ty including headers as for message ports .

Ports , like pipes , provide only one-way communication , so a pair

of ports must be created and names exchanged to allow two-way

communications . The creation , assignment , distribution , destruction ,

and dynamic management of por t names are non-trivial problems .

Protection and access control on ports would be provided by norma l

UNIX file system facilities. For example , if the NCP process were

given a unique user ID , the ports it created could be protected from

group and other access as desired. Although this much protection

comes “for free ,” it is inadequate if process ID (rather than user

ID) or even more sophisticated protection seems desirable.

IMPROVE D SIGNALS

To avoid loss of signals , the current UNIX signal memory could

be expanded from a single byte to a bit vector (one bit for each

possible signal). If the source of the signal is to be delivered ,

then a word for each signal is required (zero if no signal , or

process ID of signaler). If priority si gnal handling is desired , a

priority list must also he maintained. These are relatively easy

changes , expanding the state space of each process by 2-64 words (for

~~~~~~~~~~~~~~~~~~~~~~ 

.

_~~~~~~ -_

.

~~~~~~~~~~~~~

,

~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~
-a--- -.

~~~~~~~~~~
-- - -

~~~~ 
_ _



rp_ ---—-----_ -——-———.--. 

~

— —
-
~
-. — - -  

~

_

~~

_ 

~

a--_

~~ 

_—a- a- : —- —~~a- ----~~ —- —a-— ---.----— - . - —.-- —— ——--- .---- ------ -a

-

22

32 signals). In the typical case where there are many processes , hut

few pending si gnals , a single pointer for each process to a common

pool of signal buffers mi ght be most efficient .

Creating an event queue for each process [5 ,13] or even general

event channels accessible to multiple processes [15] requires

substantial new system code , and some form of buffer allocation and

management for queue elements. Dynamic storage allocation for othe r

system functions may already be desirable and in the works , however.

Eliminating the abortion of pending system tasks (particularly

I/O) is a much more difficult problem , basically because ~~ IX

“system” functions are performed by processes for themselves , rather

than by an independent “system .” Part of a process ’ state during

system functions is saved in fixed locations (the u-structure) , so

that a subsequent system call from an interrupt handling routine

would destroy the pending functions ’ state , making resumption

impossible. It should be noted that in some cases , an abort is

exactly what is wanted (e.g. , interrupt during wait for keyboard

input).

NEW “POST” MODE OF SIGNAL PROCESSING

The current UNIX system provides three modes of signal

processing to the signaled process: ignore , user-supplied processing

routine , and default (abort process). If the user supplies a

processing routine (for each signal type of interest), certain system

functions in progress when the signal arrives are aborted before

entering the interrupt routines. The interrupt routine then returns

to user code with an indic ation that the system function failed.

k.. . :._ ~~ a-



- - 
- -- ---- -

23

A new “post” mode o1 signal processing has been suggested where

the arrival of a signal would simp ly be “posted” and pending sys tem

functions would not be aborted. No interrupt processing routine

would be invoked , but the signal type (number) would be placed in a

location for later examination by user code . Eithe r a single

location , a single location per signal type, or a stack of locations

shared by all si gnals could be implemented . The posted si gnal could

be kept in either the u-structure (kernel space) or a user-designated

location. It would then be explicitly requested (and deleted) by a

system command or norma l memory access , respectively. This would

provide a message type signaling facility (explicit request by

receiver) in addition to the existing interrupt type facility

(receiver ’s immediate attention forced).

Such posting of signals in its simp lest form requires only a

small addition to the kernel KILL processing code (e.g., an addition

to the normal ignore code). The new mode would have to be encoded in

the signal processing specifica tion vector , resul ti ng in a minor

backward compatibility problem , since all possible signal processing

codes already have a meaning . Passing a small amount of data along

with the si gnal type (signaler ’s ID, subtype code , memory address ,

etc.) might prove very useful . The main advantage of this “post”

signal mode is the transmission of the signal without aborting

pending I/O. The need to request the signal rather than being

automatically interrupted will be an advantage in some app lications

and a drawback in others . It may prove desirable for a process to

switch a signal from post mode to interrupt mode and then block to

“wait ” for the signal when it has no more work to do.

_L ~~~~~~ 
-

- 
. - t



r - -- - -a--—- .

~~~~~~~~~~

24

SEMAPHORES

Kerne l routines currentl y have available the SLEEP and WAKEUP

commands . SLEEP blocks a process (which is executing kernel code on

its own behalf) until awakened by anothe r process with a specified 16

b it number. WAKEUP wakes up every process waiting for its 16 bit

argument (an exhaustive V). Awakened processes must test to be sure

the desired condition actually holds , since anothe r awakened process

may have been scheduled first. This facility is typ icall y used by

I/O routines waiting for comp letion of started I/O.

These semaphore commands could also be made available to user

processes. Ho~~ver , access control would become an important

consideration , since it is probably desirable to limit which processes

can affect a particular semaphore and to assign unique semaphores for

use by a group of processes. With mo re general use , efficiency would

become a mo re serious concern , since currently all processes are

searched each time a WAKEUP is performed . With further modifications ,

true semaphores could also be implemented.

SIMPLE MESSAGE FACILITY

A simp le message facility based on the IDA system [181 has been

proposed by Stockton Gaines . Each process would have a small fixed

message buffer and a ready flag. The process sets the ready flag

when ready to receive . Any other process may test the ready flag, or

write to the process (optional blocking until receiver ready or

immedia te r e t u r n with error if receiver not ready). Writing a

message clears the ready flag (and may interrupt or wake up the

receiver). ‘Ihe system supplies the II) of the writing process to the

a-
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~



‘ - a--- - -  - a - — -- -- - -a-~~~~~~~~~~~~~~~ -- -~~~~~~~—-—~~~~— - -.--a- - .a- - - - - -  -~~
25

receiver. Messages are queued in time (senders blocked) rather than

space (no message queue). Messages are written to a particular

process only. Multiple readers , message queuing, or broadcast

transmission might be implemented by an intermediary process.

Since the message size is short , this mechanism is primarily

aimed at synchronization rather than data transfer. Naming processes

is still a difficult problem as noted above . Access control is most

simply provided by the receiver discarding messages from unwanted

sources (proper identification guaranteed by system). Guaranteeing

equitable access among competing senders may be difficult. No

message types or selective RECEIVE is provided by the system , since

there is no message queue .

MORE POWERFUL MESSAGE FACILITY

A more powerful message facility with queuing (in space) of

messages , selective TEST and RECEIVE on the basis of source and/or

type , and small amounts of da ta can provide for very general process

interaction [5,131. A process is free to write its own program for

message testing and reading . This type of facility largely overlaps

the signal facility discussed above , with the addition of some data

to each signal which may be very useful (e.g. , identif ying a pipe ,

buffer , or file name). One difference is that signals (interrupts)

typically force immediate attention (unless processing is at a hig her

priority), while messages are queued until explicitly requested by

the receiving process. Implementation cost of a general message

facility is likely to be hi gh , since there is little foundation for

its attachment in the current UNIX system. 

~~~~~~~~~~~ ‘

a- — ..a-....Lt a-a-a-a ..L ...L .a- ,~ .L. ~~~~~~~ _—

a--a-a-- a- ‘ -~~ ~~ -
26

~-. —~
~

.
~
. ,- - -

~~ ,~
. ~, ~,. ~,, 7>. .~~ >. -.- . —. C-. a-. U 0 -~

z
L~~~ — U “ ~~ ~~~~~ U ~~~~~~~~~~~~~ ‘~~~~~C’ C-. ~~~~~~~~~~~~~~

CU

C’ .
- 7 ~~‘ 7 C. C , 7> . C~~ > ~. ~. ,-~ .-~C., 0

CU 0 ~.C-.

7

U)
I-. .-. C-.~ 0

--o ~ _. 0 7 ~~‘ Cl) ~. Cl) n- C-. Z C.. 0 70 ~~ ,-.) ~
~. ULC
-
~~~~~

z
CI) 

~~~
~..4 .-.~~ .

~~

0.00

(_,)J) .-~
~~~ ~~~~~~ >,

‘0 ‘-C C 0 1) n- CI) -C 7 ‘ 7 • U C..>. o U a-)
V -C
> 7• 0

0 0 C
0.~ ~~~~~~~~

—

Cl)o V U )
0.4 ) - . C
O C. ~C _, L) > U) —C 7. ~~ >-~ 7 7 Z C , CC- CC.. >‘. C.. CC, CU =

:j ‘-C
0 )/C

~~~ 

U)
-C)..

CU Cl) 7
~-. E-4 -

~~
a-- C’ - - .0 CC.

Z V . 0 C.. 0 (1) C.. >0. 0 C/) > ’ . n- - > .Z Z) . . (0 (0 7 0 0 ,~~~~E.” -
~~

~~

7~~
E

C-,

>‘
0 0.0. -z4C C.) 0’ .0 0 C.
Cl) U) C.. 0. (0 U) , .- - ‘ >~ 7 Z C-- C.. C.. ,Z C. “0 0

C. C. a-

C Z 3
C 1:

.
~~~ ‘O Ia- Z .-’ V

0., C .,C~~ C.

< 4 Q ,~ ) CU
0’ .0 ).) ‘0 ‘ 0 ’

V C. ~~ 0 Cl) 0 0 0. 0 U) >~ - .C~ 7 Z). U C.. C. C.. CC .0 7 C ‘0C. V
C. C

CC a- CC
0 .0’ .’)  0. ~~~~~~ CU

— C.. ‘.‘) ,C U) C
0. ~ C

.0 ‘ V . -.
fl ~ 

).~~~C’ —.
4C 0 1’) -‘ 0 C.
CC. .~ 0. ~‘C 0. ,C 0- -.t .0 0

CC) CI) (0 CO O. 0 0 C . C . 7 7 7 >.  CC ‘ 0 1 0 0  C UZ
0 . 3 ) 4

- - ‘ 0 U ) O V a-

~/ ) C V O  C. C C.
V C~~~0- ’  ‘-4 V C a - .  ., ‘0... V C- C - 3  —. .0 CU

0 V ~~~~~ C’. CU C C - . C . . V C  (C CU ‘ --j a-. — C C  CU
-~ — o ’ , — >  t o  — o  v . ‘ — U . - C U C U . -  .... C.’) —. C-. . C.
C. C.~~~ C , J - ., O C U  •‘ -.~~ ,, .C .’ - C , - U  t C . I .L~~~ ‘... -.., ,_. -, ~- CU: —. ,C.

- - ‘ ‘C . -  ‘C C C C , O C U  a - C ’ a - C . O - .  C U Z . C  ,o U -t
a-. ‘i . .  - C C U 1~~.) ‘ C . C . , C C ... C - - . ’ C V 0 1 ’.-, ,~~~ C U . -  .‘) 0 0  0

C. C : t C . ’ O c t C . C - . C . C t C - C - V t C n - -. C . ’, C - -. -— C - C - . ’~
fl -‘ - ‘ -~~ . >~~~~ C-. ’t c - - 0 C C . -  0 0 : 4  3 C n  I .- a - 0 2  C

C C, . - ‘ , C C C - -C ’ C C U  C O O  -C ‘ - C , 0 0  a-. —’ a - > , , -  C. C.
‘C ‘ C . L . C :~~ C C — ~~~’C~~~. - -- CV - C . ’ —~~ > O . C . t) 0 C- ’- > ,C C - — ’ ’C C C C - - ~~~~ .~ C. CU

‘ 0 f C . > , ,  —. C.~~’ C . -’ Cj ’a- .~. a- 1~~ V . ’ -. .. ~~~~~ C..
C , , ,  I), ‘ C a - a -~~~ , ’,, a- , , . C . • , .  ., C .—. .. -,. .L : 1  1 .  -

~j  “0 C,.
., ‘, c. t ~~~~~~~~~~~~ 

C . - - -. . ., ‘ o~~~.. ~~~~~~~~~~~~~~~~~~~~~~~~~~ : - - -
/ ., - I .  C. %, C, 0 : . n . J C, t , V f 0 1 0 .( , , V” ’) [ l  C . . ~ V ’ C .  ‘. /  C C , .  —
C . : C : ‘0 V : ‘ - - - I - I. C a- -a- a- ‘.1 ‘0 -‘ a-. Ca- .  I. — ., - - .  - . a- r ‘ 0. a

C O .  C.~~~~C . r -. C . ” J i C . . - . - ’ L C . ” 2  : - — - - - . C .’ . , V , . - - . 0 ,’ C -  -
_, C . f’C I. . ,  1 .  ‘1, ~~~~~~~~~~~~~ ~~~ ‘0 : , 1 C C . ’-. ) , - - . — t C -  -

C C’) .‘ ‘ ‘- - - C . - - ‘~~~~~~~~~~V - ’  - C
K .1. ‘ ‘ .-. -. ,C C- , C’ . ‘I. ‘ .., .: ‘j’, /. C.,

.1. ___-



‘27

V I .  CONCLUSION

App lica tions involving cooperating concurrent processes require

powerful interprocess communication facilities. Existing UNIX IPC

facilities have several weaknesses that have hampered the development

of such app lications . Chief among these are the inability to wait

for multi pl e inputs , the inability of “unrelated” processes to

communicate , and~the primitive signaling facilities. This report

outlines several techniques for improving these weaknesses including

named ports , messag e por ts , various improvements to signa l fa cili tie s ,

and new message facilites. Named ports allowing communication

between unrelated processes , and messag e por ts iden ti fy ing the sou rce

of inputs to the port appear to have a high benefit /cost ratio and

have been chosen for initial implementation (see companion report

[17]) . Several attractive improvements to synchronization primitives

have also been identified , but further research is needed to finalize

an implementation plan in this area.

a- a-.—. 
~~~~~~~~~~~~~ 

.

-
..

. - 1 ~~~~ 1~~~~~~~~~~Li —- a- -.-.---- - -—a--—-a--- . ——

• ~~~~~~~~~~~~

REFERENCES

1 . Ritchie , D. M ., and K. Thompson , “The UNIX Time-Sharing
System ,” Comm ._ ACN_17 , 7, July 1974, pp. 365—375.

2. Dijkstra , E. W ., “The Structure of TIlE--Multiprogramming
System ,” Comm. ACM 11 , 5, May 1968, pp. 341-346.

3. Lampson , B. W ., “A Scheduling Phil osophy for Mul tiproc ess ing
Systems ,” Comm. ACM 11, 5, May 1968, pp. 347-360.

4. Habermann , A. N . , “Synchron iza t ion of Communicat ing
Processes ,” Comm . ACM 15 , 3, March 1972 , pp . 171-176.

5. Retz , D. C., “Operating System Design Considerations for
the Packet Switching Environment ,” Proc. National
Computer Conf ., 1975, pp. 155-160 .

6. Bayer , D. L., and H. Lycklama , “MERT - A Multi-Environment
Real-Time Operating System ,” Proc. 5th ACM Symp. Op. Sys.
Principles, Austin , Texas , November 1975 , pp. 33-42.

7. Wecker , S., “A Building Block Approach to Multi Function
Multi Processor Operating Systems ,” Proc. Computer Network
Systems Conf ., Huntsville , Alabama , American Institute
of Aeronautics and Astronautics , April 1973, New York .

8. Lampson , B., et al., “A User Machine in a Time-Sharing
System ,” Proc. IEEE 54, 12, December 1966, pp. 1766-1774.

9. Thomas , R. H., “JSYS Traps - A TENEX Mechanism for
Encapsulation of User Processes ,” Proc. Fall Joint C
Computer Conf ., 1972, pp . 351-360.

10. Spier , M ., and E. Organick , “The MULTICS IPC Facility ,”
Proc. ACM 2nd Symp. Op. Sys. Principles, Princeton
University , October 1969, pp. 83-91.

11 . Balzer , R . N . , “PORTS - A Method for Dynamic In te rp rogram
Communication and Job Control ,” Proc. Spring Joint
Computer Conf., 1971 , pp . 485-489 .

12. Akkoyunlu , E . , A. Bernstein , and R. Schantz , “Interprocess
Communication Facilities for Network Operating Systems ,”
Computer, June 1974, pp. 46-55.

13. Holmgren , Steven F., et al., Illinois Inter-Process
Communication Facility for UNIX, Technical Memorandum
84, Center for Advance i Computation , University of
Illinois (at Urbana-Champaign), April 1977.

- -

~

, , ., - ,_. C . - , , -“a-- ‘~~~~ - -~~~~. - ‘~~~~~~~~~ -- ‘

a-’ - -a- — - a- -.-a-~~~~~~~~~~ . a - a - . a - a - ~ a-.-a-_ ~~~~_.- a - a - ~~~~~~~~ --.- - -

30

14 . Wuif , W. A., and R . Levin (eds.), “The Message System ,”
in The Hydra Op~ratin~~ System, D e p a r t m e n t of C o m p u t e r Science ,
Ca rneg ie-Mellon University , Pittsburg h , Ju ne 1975 , pp . 93 - 118 .

15 . Data Disc , Inc. Notes on Event channels for UNIX~, 1976.

16. Anderson , R. H. , and J. J. Gi l log ly , Rand I n t e l l i gent
Terminal Agent (RITA) Desi gn Phi1 osoa-j4~y , The Rand
Corporation , R-l809-ARPA , February 1976.

17. Zucker , Steven , Inte iprocess Commun ia t i on Ex t e r i s i ou s
fo r the UNIX Operating ~~~~~~~~~~~~~~~~~~~~~~~~~ ion ,
The Rand Corporation , R-2064/2-AF , June 1977.

18. Gaine s, R. S., “An Opera ting System Based on the Concept
of a Supervisory Computer ,” Comm. ACM 15, 3 , M a r c h 1972 ,
pp. 150—156.

19 . Metcalfe , R. N . , “ S t r a t e g i e s fo r Opera t ing Systems in
Computer Networks ,” Proc. ACM Annual Conference ,
August 1972 , pp. 278-281.

20. Horning , J. J ., and B . Randell , “Process Structuring, ” C.f~ ’~
Computing Surveys 5, 2, March 1973 , pp . 5-30.

21. Walden , D. C., “A System for Interprocess Communication
in a Resource Sharing Computer Network ,” Comm. ACM 15, 4,
April 1972, pp . 221—2 ’~0.

22. Metcalfe , R. K ., “Packet Communication ,” PhD Thesis ,
Harvard University , December ‘.973.

23. Bobrow , D. G . , et al ., “TENEX , A Paged Time Sharing
System for the PDP-1O ,” Comm. ACM 15, 3, March 1972 ,
pp. 135-143 .

24. Postel , J. B . , Survey of Network Control Programs in
the ARPA Computer Network, MITRE Tech . Report No. 6722,
October 1974.

25. Brinch Hansen , P., “The Nucleus of a Multiprogramming
System ,” Comm. ACM 13, 4, April 1970, pp . 238-241, 250 .

26. Sorenson , P. G., “Interprocess Communication in Real-Time
Systems , ” Proc. 4th ACM Symp. Op. Sys. Principles,
Yorktown s~eights , New York , October 1973 , pp. 1-7.

27. Sevcik , K. C. , et al., “Project SUE as a Learning
Experience ,” Proc. Fall Joint Computer Conf ., 1972 ,
pp. 331-339 .

L— - C, ‘ s . — - -

~

— - - - ——--- — — ~~
-

31

2~~. M o r e n o f f , E . , and J. B. McLean , “Inter-Program
Com m u n i c a t i o n s , P r o g r a m S t r i n g St r u c t u r e s , arid B u f f e r
Files ,” Proc. Spri~~ Joint a-ç~~puter Cant ., 1967 , pp . 175-183.

29. Farber , D. J., et al ., “The Distributed Computing Sys tem ,”
PrOC . IEEE Co~puter Society j,~iternationa1 Conference ,
San Fr anc isco , February 1973 , pp . 31-34.

30. Holt , R. C., and N. S. Grushcow , “A Short Discussion of
In terprocess Communication in the SUE/360/370 Oper at ing
System ,” Proc. ACM SIGPLAN-SIGOPS Interface Meeting,
Savannah , Georg ia , April 1973, pp . 74-78. Also SIGPLAN
Not ices 8 , 9, Sepember 1973 .

31. Hoare , C.A .R., “Monitors: An Operat ing System St ructur ing
Concept ,” Comm. ACM 17, 10 , October 1974, pp . 549-557.

L. ~~~~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _ _  4


